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On the Relationship Between the R and S Arrays and the
Bo.z—J.nkins Method of ABMA Model Identification

Wayne A. Woodward and B. L. Gray
Southern Methodist University

ABSTRACT

In this paper an ext.n~1-ø~ of the partial autocorrelation function

which we call the generalized partial sutocorrelat ion function is .

investigated. This generalized partial autocorrelation function is useful

in ~wa~li~ing the relat ionship between the R— and S—array method of Gray,

Kelley, and Mclntire and the Bo~~Je~1r4’~ approach to ARM& model identif i-

cation. Also the generalized par tial autoco rrelation is shown to be a

useful modal identification tool to be used along with the R— and S-arrays.

Also discussed is a reform att ing of the S—array into the Shifted S—array

which the authors believe to be easier to use in practice than the S-array.

Th* methods of this paper are illustrated by means of ewa~p1.s including

an analysis of the Ma kri dakis (1978) metals series data.

Ely words: autore gressive—moving average proce sses ; generalized partial

autocorr lation function; part ial autocorre latio n function ;

R— and S-arrays ; time series
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On the Relationship Between the R and S Arrays and the
Box—Jenkins Method of ABM~ Model Identification

Wayn e A. Woodwar d and H. L. Gray
Southern Methodist University

1. INTRODUCTION

Gray, Xsllsy, and Mclntira (1978) have proposed an alterna-

tive to the Box—Jv~b1na approach of LENA (p,q) model identification

based on R- and S-arr ays. Their method was shown to perform well

in practice , and it uniquely determines p and q when the true auto -

correlation function is known . Using the Box—Jenkins approach,

however, when the autocor relat ion function is known , unique deter -

aination of p and q is only assured when either p — 0 or q 0.

In this pap er the concept of a generalized partial autoco rre—

let ion function , a natural extension of the partial autoco rrelation

function , is discussed. It will be shown that more information con—

- 

. earning the order of an ANNA (p,q) pro cess is avail able in the

generalized par tial autocorre lation function than in the partial

autocorr elation function , even when q — 0. It will also be shown

• that the generalized partial eutocorrslat ion function can be obtained

as a ratio of ela.snts in the S-ar ray , and that s~~ signtf Leant infor—

mation in the S—array can be lost when - the ratio is taken.

2. METHODS OP )~ DZL IDEETITICATIOI

Consider the ANNA (p,q) process given by

~~~~~~~~~~ 

.

~~~~~~~~~~~~~~ 

~~~~
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— ,lxt_l — ... — ~~~~~~ — at — e1a~..1 
— ... — ~~~~ (2.1)

where •k’ k — 1, ... , p and O~ , j • 1, . . .,  q are real valued con—

stante with • # 0 and 8 # 0 and where a is white noise. Employingq t
the backward shift operator B, defined by BX

~ 
X~~1, equation (2.1)

is often written in the form — e(B)a
~ where

•(B) — 1 —  •1B — ... —

8(B) — 1 — 11B — ... — OqBQ
•

It will be assumed that th. two equations

$(r ) — 1 — •1r — ... — — 0
and

e(r) — 1 — 81r — ... — eqr~ — 0
have no co on roots ,

Letting p.~ denote the autocorr elation function at lag k , it can be

shown that if is a stationary ARMA (p,q) process , then

— 

l~k—1 — — p~k—p 
— 0, k ~ q + 1. (2.2)

In particular , if q - 0, then

— 

1~k—l — — p~’k—p 
— 0 k > 1. (2.3)

Pros (2.3) we obtain the well—known Yule—Walker equations , i.e. ,

p1 - + + • +

P2 — + + + p~p-2

: (2.4)

— ~Pp~j + •2~p..2 + ~~~ + •p

0p4l i~p + $2Pp..1 + •~~• + p~l

Pp+2 — .l
pp+l+.2.p + ...+.,02 .



Resic to the Box—Jenkins approach of ANNA model identification is

the partial autocorrelation function given by

1 p1 p2 ~k—2 ~].

01 1 p1 0k—3 ~2

~k—1 0k—2 ~k—3 ~~~~~ ~l
- 

. $.~~
_ .  

~ (2.5)
1 p2 0k—2 0k—1

P1 1 - A •P~_3 0k—2

•

0k—1 0k—2 0k—3 p 1 I

That is, if it is ass~~~d that the process actually is ANNA (k ,0),

regardless what th. model actually is , then is the Cramer ’s Rule solu-

tion of the first k Tule-4lalksr equation s in (2 .4) , with k — p, for the

last autoregressive coefficient. The Box-Jenk ins procedure uses

the fact that if 1(t) actually is ABNA (p ,O) then is nonzero for

k — p and identically zero for k > p. Also utilized in the Box—

J~~~~ n procedure is the fact that if the process is ANNA (0 ,q) then

— 0, 1 ~ q. That procedure involves the tuspaction of graphs of

the a~*ocorrs1atios function d partial eutocorrslation functions.

Iowsvsr, wham p and q ar e both greater than zero the autocorrslation
5 end partial autocorrelattan function do not possess graphs which

• uniquely determine p and q by simple inspection.

4”:.
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4
Upon .~.~{nation of the Yule—Walker Equations in (2 , 4) it can

be seen that if X(t) is ANNA (p,q) then the autoco rrelstion function

does not satisfy the first q Yule—Walker equations but does sat A.sfy

equations q + 1 and following. Using this observatio n vs can define

the generali zed partial autocorrelation (GPAC ) function as

P~ 1+2 0j+ 1

~~+l ~j  
‘ ~j—k+3 Pj+2

S

— ‘ - .  . s f 4  .

0j4k.-1 0j4~—2 ~~~~ ~~~~~ 0j4k
— . (2.6)

~~~~~~ 
0j —k+2 0j~k+l

0j+l 0j 0j—k+3 0j—k+2

Pj .~~...l 
0j 4k—2 • .. P~~1 Pj

Thus, ~~ is the Cr amer ’s Rule solution for the last autoregressive

coefficient using the (3 + 1)st through (3 + 1)th Yule Walker

equations in (2.4) with p — 1. That is, is the last auto—

regressive coefficient if it is assumed that the process is ANNA (1,3).

It is easily seen that if is actually ANNA (p,q) then —

Also, if is ANNA (p,q) then 6” is nonzero for I p and identi—
1k

cally zero for k > p. In addition if the proc ess i. ANNA (p,q) one

would normally use squa~ions q + 1 through q + p to solve for the

paran st.rs . Nowsver, one could utilize the p equations q + i through

q + i + p — 1 for i — 1, 2 , ... and obtain the sane solut ion for the
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parameters if the true autocorrelation function is known. Thus, if

1(t) is ANNA (p,q) then — •~, , i. — o , i , ... . These properties

p make it possible to uniquely identify p and q of a mixed process by

simple inspection of a table if the true autocorrelation function is

known. Granger and Newbold (1977) note that Jenkins has also

suggested the use of for aiding in model identification.

For each q, q — 0, 1, •.. we will consider the GPAC function

p — 1, 2 , ... . Of course •~
), p — 1, 2 , ... is the usual

partial autocorrelation function. Two methods of s~~~ariziug this

collection of generalized partial autocorrelation functions for pur—

poses of identifying p and q will be discussed. A first presentation

is the array given in Table 1.

TANLE 1

GPAC Array
Autoregressive Order

1 2 ... 1

0 (°) (°)
~oving 11 622 611

(1) (1) (1)
•~ Average : 22 611

S S. .
• 

•
(&) CL) CL)
11 22 11

:

If It is an ANNA (p,q) proces s, then the associated array will have

the pattern shown in Table 2.

‘ i’

~

~~~~~~~~~~~~~~~~~~~~~~
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TABLE 2

GPAC Array for an ANNA (p,q) Process

Autoregressive Order

1 p—i p p+l p+2

(0) (0) 
- 

(0) (0) (0)
)bving 0 ~~~~~‘ 1p—l ,p—l pp 4

~p+l,p+1 “p+2,p+2

Average • S S a S

a 
S 5 5 5

Order . . .
~ 

(q—l) (q—l) (q—l) (q—l) (q—1)q ll p—l,p—1 pp p+l,p+l p+2,p+2

(q) (q) 0 0q •~ • . •  p—l ,p— 1

~ 
(q+l) (q+l) *q+ 

~~ ““ p—l,p—l $~, U u

: : : :
S S • S S S

— undefined

- 

- Thus the procedure is to search for a col~~~ p in which constant

behavior occurs and a row q in which the elements are zero for
~~~~

col~~~s I, I > p An alternat ive to this approach is a graphical

procedure in which each raw of Table 2 is graphed on the same set of

ames and the patte rn s of Table 2 are viewed graphically. This

approach is similar to the Box-Jenkins graphical approach.

Gray, lelley, and Melntire (1978) approach the problem of

identifying p and q by defining 1 and S arr ay elements as the fo1lovin~
~

-

- 

‘

, 
‘

~~ ratios :

: 1

‘a ~~~~~ -

_ _  
_ _ _  
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I (f ) — H Cf )/H (l;f )n m n m fl n (2.7)

where

~~~~~‘ 

~m+n—i

~ 
~ipn

Hn(fm)

~~I~.-l ~m+t ~m+2n—2

and

1 1 ... 1

cl.1
H ( 1 f ) —  c.P1
n+l ‘a :

~m+n—l ~mên ~m+2n—l

In their work, 
~m 

— or em” (~l)mpm where is the eutocorrelation

function of the ANNA (p,q) process at lag a. A simple iterative

method of calculating the 1 and S array elements is also available.

(See 14D .
Ths properties of the S-array upon which the Gray, X.elley, and

Mclntir e procedure depend are s~~~ar ized in Theorem 1.

Theorem 1. Let It be a stationary ANNA (P,q) pr ocess (p > 0) with

autoco rrelation p -. -Suppose S (p ) is defined and nonzero f or all a.a n a

~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~ 1~i~~~~~~4~M
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(a) Fc~ some integer m.~ and some constant C1 ~ 0,

Sn (Pa) — C1, a > a
0

Sn (P~~_i) # C1
iff n — p a n d m0 — q — p + 1 .

r P -‘
Moreover C — (1)P 11 — 

~~ 6,.1 L k—i ‘i
(b) Suppose S C O w) is defined and nonzero for all a.

For some integer and constant C2 g~ 0,

— C2, m c  a1 
S ( p ~~~1) ,& C2
iff n — p and a1 — —q — p. 5

Moreover C2 —

(c) For k ‘ n , Sk (P_k_m) — ± —

end 5k~~—k+m+]) 
— (—1) —n s~(o~~~~1)

i f f n — p a n d a— q .

Proof: Proofs for (a) and (b) are given by Gray, Kelley, and Nclntire

(1978) and in more detail by Nclntire (1977). The proof of Cc) follows

easily iron (2.7).

The S values are placed in an S—array as in Table 3 where we have

employed the shortened notation S~ (m) —

TABLE 3

a~~~ ... I

—L S (—L) ... 5k~~&)

—L +1 5ic—~~~ ... S~ (—L+l)

—l 5
~

c— 1
~0 si(0) ... S,,~(0)

1 Sl(1) ...

:
3 5 (3)

1. 
•

I ~~~~~~~~ ~ I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ J—
~ J~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~
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In Table 4 we present the behavior of the S—arra y when

ARMA(p ,q) and 
~m

TABLE 4

1 •, •  p~ p+1 p+2

—L S1(—t) •.. C2 U U

—L+l S1(—L+1) C2 u u

• S S ft
• S S . S

— q—p— 2 S1(—q—p— 2) C2 u

—q—p— l S1(—q—p— 1) • . .  C2 + ~2q non—
teonatants

— q—p S1(—q—p ) ... C2
- ~2q non—

(2q non— (constants
• a Jcous tents ~ (— 1)

+q—p S1(q—p) ... —C1 u

q—p+l. S1(q—p+1) ... C1 U U

: : : :

3 S1(j) ... C1 u

1
~Note constant stretches

The following theo rem establishes the relat ionship between th~ .~-

arrays and the generalized partial autoc orrs lation function.

- 

• Theorem 2. Let be the autocorrelation function of a stat ionary

ties series • Than

— — 

~~~~~ ~~~ 
/s~ p_~ 3

~~~~~ J• ~ ~~~~~~~~~~~~~~~~~~~~
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Proof: We will let J A I and I B I  denote the numerator and dsiw,~~’~~tor

deter mll al I.b reapectively in the definition of ~~~ in (2.6) . By

definition,

~k Cp_k+j+l) 
- _ _ _ _ _ _ _ _ _ _ _ _ _ _

S1(9 13 )

— (—l)1H~~1(1;p 1_3)

Also, it can be shown that

—

In addition

— (—1)
~~

2
~I B I  and H1(p

13
) — (—1) T Al

where I ] denotes the greatest integer function. Thus

E~~ 3
— 5k~ —k+j+]? 

(—1) (_l)k(_l) 2 I A I -

8k
~~—k—j~ 

— 

(— l)~~~~I B(

_ t ~~
) .

• ~~~ :
_ . As a practical point it should be noted that although the

e1e~~~ts of the GPAC array could be calculated via their dsfieing

relat ion (2.6) , their calculation is facilitated using Theor em 2 and

- 

iT the iterative procedure for calculating S—arr ay el~~~nts .

is
.

-
~ ~

.- - -‘ i: ’
~ 

- - ‘
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Before proceeding further it should be pointed out that a

result similar to that of Theorem I. holds when £ — (_l)apa (see

(4~). Gray, Kelley, and Nclntire recu~~~nd the inspection of the

S—arrays both with - and with — (_1)m0 since the model

identification behav ior in the presence of noise ii often clearer

in one of the ar rays than in the other, yet neither is uniformly

better then the other. It does appear that for low frequency data it is

better to take — (~
i)
~~a 

in computing Table 3 and for high frequency data

S—arr ays are usually better at where will be defined in Section 3.

Theorem 3 establishes the relationship between the generalized

partial autocorre lation function and the S—array with — (_l)
a

p
m

S

Theorem 3: Let be the autocorr elation function of a stat ionary

t ime series and let — C_l) mpa. Then ,

— (~1)k~ s1(f _~~ )/81( f )

Proof: It is easily shown, that when f
~ 

— (_i)mpm,

— S1(f ...~~~+1)

5kU_k~j
) 

—

• where IA *l and $*~ are defined as were Al and lii in the proof of

Theorem 2 with 0a replaced by (_i)mp
a

a Through row and co1~~~

operations on lAd and 11*1, it can be shown that la*lIlB *l —

Il l/ I l and the result follows.

Theorem 3 shows that the GPAC array can be calculated

from the S—array at or — (_i)
C

P
a

S

I . 

- . 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~
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3. MODEL IDENTIFICATION USING THE GPAC ARRAY-
IU~USTH~~Ifl ue~ tss

In this section we will illustrate the use of the GPAC array

through three examples. In these ~~~.‘pl.s the autocorrelation

function will be estima ted based upon a realization of length T

by 
-

T-a
I (1~~Z (Xt+m b

t—0,~ — T
I (x,1 —~~

2
t.0

It will be seen that the patterns in the GPAC array, although someshat

disturbed , are still very useful in identifying the order of the model .

w~~~p1e 3 indicates a caution which must be exercised in the use of

the CPAC arr ay for deter~i1ng the moving average order.

P4Mily, before proceeding to the w~~p1ss it should be msntionsd

that if p — 0, the Box—Jenkins procedure , the Cray, felley, Mclntire L
procedure, and the GPAC procedure all must utilize the autocorrel.ation

function with its property that 
~k — 0, 1 > q + 1.

~~~~~~~~~~~~ Consider the process

X
~~

— l.34Z
~...1

+ .65 X
~—2

a
~
. (3.1)

In Table S the GPAC array using the true .:.utocorrelation function

is presented. The identificat ion as an ANNA (2,0) process La clear

• due to the fact that •2+j ,2+j — 0, i — 1, 2, ... and that — ~~~ S65 p s
’

i — 0, 1, 2, 5 55  5 In Table 6 the semple generalized partial

• ~~~~~~~ ~~ ~~~~~~~~~~~~~~~~~~ ~~ -W 
~~~ ~~~~~~~~ 

-
‘

~

-- 
-
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sutocorrelat ion function array is given based on a realizat ion from

(3.1) of length 100. The patterns which occurred exactly in Table 5

are still visible In Table 6, i.e., ,2+i.l < .127 , 1 — 1, ... 8
and % — .65, 1 — 0, ... 5. Of course the process is strictly

autoregressive and it is clear that one could have identified the

process as ANN* (2,0) strictly on the basis of the first row of

Table 6 which is the partial eutocor relation function. Bowever , as

will usually be the case, the constant behavior , which occurred in

the second col~~~ in this .~ esple, La the most visible patter n. In

any event the coehination of both i clearly more informative than

either alone . In ~~ample 3 vs will deal more completely with the

compar ison of the model identification capabilities of the constant

coli behavior and the zero row behavior in the GPAC arra y.

TABLE S

True Generalized Partial Autocorrelation
Functio n Array for Series (3.1)

Autoregressive Order
1 2 3 4 5 6 7 8______________________________________________

0 .812 — .650 .000 .000 .000 .000 .000 .000
1 .540 —.650 u* u u u u u

I~viag 2 .135 —.650 ii u u u u u
Average 3 -3.458 - 650 u u U u u u

Order 4 1.528 — .650 u u u u u u

S .915 .650 u u u u u ii

C
u — undefined

S 
-

4-

’

, __ _ _ _ _ _ _ _ _ _ _ _ _

t~~ 
_____ 

__ 

~~~
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TABLE 6

Sample Generalized Partial Auto correlation Function Array
for a Realization of Length 100 from Series (3.1)

Autoreg ressive Order
1 2 3 4 5 6 7 8

0 .821 — .650 .029 —.114 — .075 — .127 — .034 .091
1 .562 — .628 —2.487 — .133 .116 — .107 — .370 .074

Moving 2 .209 — .702 .392 .232 — .196 — .170 — .160 .012
Average 3 —1.894 — .715 .873 1.143 — .738 — .278 — .167 —2.244
Order 4 1.901 — .670 — .276 —1.067 .450 — .561 — .343 .481

5 1.195 — .720 3.137 — 1.292 — 1.692 — .281 .480 — .052

~~~~1i.i Consider the pro cess

It — 1.5 1t—l + 1.21 1t—2 — 
~~~~~ X~3 — at + .2a~_1 + .9at_2. (3.2)

In Tables 7 and 8 are given the GPAC arrays based on theoretical

eutocorrelations and sample autocorrelations f rom a realization of

size 300 respectivsly. In Tab le 7 the fact that 
___ 

— o, i —

1, 2 , ... and that — — .455, i — 1, 2, •~~~: indicates that

p — 3 and q — 2. These patterns again are also quite clear in Table 8.

TABLE 7

True Generalized Partial Autocorrelation
Function Array for Series (3.2)

Autoregressive Order
1 2 3 4 5 6 7 8

0 .845 — .706 .414 .299 —.304 — .145 .245 .062
1 .606 — .438 .836 .683 —.434 — .646 .279 .848

Moving 2 .391 — .070 .455 .000 .000 .000 .000 .000
Aver ags 3 .328 2.073 .455 u* u u u u
Order 4 1.356 — .119 .455 u u u u u

5 1.632 5.367 .455 u u u ii u

- 
- Cu — undefined

P Ø~~I~~’* .~~~~~~~ ~~~~~~~~~~~~~~~~ 
_ _ _ _  _ _ _ _ _
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TABLE 8

Sample Generalized Partial Autocorrelat ion Function Array

for a Realization of Length 300 from Series (3.2)

Autoregressive Order

1 2 3 4 5 6 7 8
0 .819 — .725 .344 .313 — .164 — .177 .1.45 .105

• 1 .528 — .540 .930 .477 — .494 — .307 .270 .271
Moving 2 .165 — .309 .458 — .017 .101 .014 .004 .037

• Average 3 —1.124 — .204 .452 2.850 .104 — .017 — .123 .045
Order 4 .296 —1.048 .468 .024 .092 —1.702 — .316 .072

5 —4.174 — 1.596 .467 —1.771 .145 .005 .294 .393

In Table 9 is presented the GPAC array using the true

autocorrelation function for the process

— .19 1t—l + ~~~~~ X~_2 — a~ — •~~ •t—1 (3.3)

In that array it should be noted that

4~~ .._ .75, i ~~ o and

Since th. process is ARM& (2 ,1) we would have expected — — .75 ,

j  ~ 1 and — .75. This — ——plc, however , points out that the

constant behavior in the ~th colunn of the GPAC array of a sta-
-~~-~ c_

tionary ANNA (p,q) process may begin prior to row q. In other words

if the proces s ~ctua11y is ANNA (p,q) , with the ~~~ auto re—

$r.asive coefficient , and it is treated as an ANNA (p,q—1), for

£~~9le, th. estimate of the ~th autoregres sive coefficient In this

case may also be ep . Thus, the user must exercise caution when

I 

_ _ _  

_

t~~
2 
_ _- - - ---

~~~~~~~~

— -  -5 - --~~~~~~~~ .- 
_ _  

- - 5 -  - - -‘ _ _ _  _ _ _ _ _
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using the GPAC array to deter~{ne q • The constant behavior in a

col of the GPAC array should be accompanied by the appropriate

zero behavior. It is clear that for a stationa ry ANNA process ,

— 0 for k > p + 1 and # 0 if and only if the proces s is

ANNA (p,q) . Thus , in the array in Table 9 , although the constant

behavior La misleading, the zero behavior correctly -identifies p and

q. We will formally state the results of the above discussion in

the following theorem.

Theorem 4. Let be a stationary ABMA (p,q) process (p > 0).

(a) — i ~~ q. 
-

(b) Suppos e that the nth order Yule—Walker equations are non—

singular. For some constant a, — 0, k > n+1 and # 0

iff n — p and a — q.

Referring back to Theorem 1 and the corresponding resu lts for

~k — (_1)kpk (see 141) it is seen that the constant behavior In the

S—arr ay is necessary and sufficient. In Table 10 is presented the

coli~~ of the S—arr ay with — from which the CPAC array in Table 9

j was calculated. We see that , as would be expected from Theorem 1, the

ambiguity seen in Table 9 is not present in Table 10. The additional

- - 

-- constant term in Table 9 was due to the fact that 1.749/2.333 —

- 
~
- 1.560/2.080 t’~ 3 d.~1~~ 1 places. It ii obvious that sequences of con-

stants In the OPAC array due to constant ratios with nuesretors and

denominators which vary, can in fact occur In any col~~~ of the GPAC

arr ay. Thus, the S-array should always be checked whim considering con-

stant behavior in the GPAC arr ay. In Section 5 we will demonstrate that

the zero behavior of GPAC can also be mislead ing. This problem is also

— alleviated via the S—array as we will see.

.4
I•

5- -“
~~~
‘ 
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TABLE 9

Theoretical GPAC Array for Series (3.3)

Autoregressive Order
1 2 3 4 5 6 7 8

0 .000 — .750 — .325 — .157 — .078 — .039 — .019 — .010

• 1. —2139.989 — .750 — .000 .000 .000 .000 .000 .000
Moving 2 • l90 -.750 u~ u u u u u

• Average 3 —3.750 — .750 u u u u u
Order 4 .390 — .750 u u u u u u

5 —1.733 — . 750 u u u u u u

— undefined

TABLE 10

Co1~~~ 2 from Theoretical S-Array with
— for Series (3.3)

Co1 2
- 

—7 2.587

—6 2.587

—5 2.587

—4 2.587

—3 2.587
—2 2.334*
—l 1.751*

0 1.940
1 1.940

2 1.940
3 1.940

4 1.940;

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~
•t

~~~~~~~~~~~~~~~~~~~~~~~~
-
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-
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4. THE SHIFTED S—ARRAY

The present investigation of the GPAC array has led to a

rs-~~~”-tion of the S—array. For a stationary ANNA (p q) process,

the constant behavior in the ~th column of the GPAC array relates

closely to the constants C1 and C2 in the ~th coli~~ of the S-array.

The “zero” behavior in the GPAC array In turn corresponds to Theorem

1(c) . That ii if is ARM (p,q) then for i — 1, 2 , ... we hews

Sp~j (P_p_j_q) — ± • and Sp+i (P _p..i*q+j) — (—l) 1C~ while $~~~,p4j —

— 

~~~~~~~~~~~~~~ 
/S

~,.~.~
(P _p..i_q) — 0. Gray , Kelley, and Mclntir.

(1978) rsco end utilizing the information in e’olumn p + 1 In the

identificat ion of an ANNA (p,q) process , but they do not suggest

utilizing the behavior described in Theore m 1(c) for i > 1. In fact

the D-stetistic (see [ 4) )  utilizes co1~~~s p and p + 1 only (in

addition to column p + 1 of the B-arr ay) . Thus the S—array approach

uses the constant behavior and the first zero in the row behavior of

the GPAC. It seema that one is in fact ignoring useful model identi—

fication information by not considering the behavior in the columns
‘~E’-’•~ tpast the p + 1 ~ coltems of the S-array. The authors are currently

considering a modification of the D-statistic with these coements in

mind. This point will be c~~~snted on further in Section 5.

The S—array, however, is not presently designed to easily

facilitate such an — 4 natiou of the Theorem 1(c) behavior as one

- - - ]  must proceed diagonally through th. array to ~~~~~~~~ ne this behavior.

To alleviate this problem, a modification of the S-array, to be

called the Shifted S-array will be introduced. This Shifted S-array

h- ~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I

~~ 4�2~ ~~~~~ ?~~~~ JJT IL - ~‘
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was first prop osed by G. Zelley in 1977. Letting S~(f~) denote the

element in the kth co1*~~ at lag j of the Shifted S—array , we have

S~ (f~ ) — Sk (f j ..k+1).

Thus, Theorem 1 can be restated as follows.

Theorem 1’: Let be a stationary ARMA (p,q) process (p > 0) with

autocorrelation 0a’ Suppose that S
~

(Pn) is defined and nonzero for aU m.

(a) For some integer m0 and some constant C1 ~1 0,

S~ (P a) C i, m > m .~

• ~:~~m0—i 
“ Cl

iff n — p and — q.
p

Moreover C1 — (_ 1) P []_ E +k].
k—i

(b) For some integer a1 and constant C2 # 0,

S*(p) C2, m < m ~

# C1
i f fn pan d m1 — q — 1.

Moreover C — —c /~2 i p  -

(c) For k > n , S~(p n-1) — ± • and

S~(p )  — (_i)
k_n

s*(p )

iff n — p and a — q.
Thus , if is a stationary ANNA (p,q) process , then in columns

p + i, i — 1, 2, ... the value ± e will occur at lag —q—1 and

-

. 

.• (—3.)~ C1 will occur at lag q. In addition to s1~~lifyin$ the Theorem

p 
• 

1(c) behavior, Theorem l~ and Table 11 indicate that the constant

behavior will also be sI~~lified. In the Shifted S-array for a

stationary ANNA (p,q) process the 2q non-constant terms will always

be the el ents from —q through q—l regardless of p. That is, the

noncoustant behavior will almays be centered around lags -l and 0.

This will sI~~lify the use of the information in the S—arra y and will

eliminate the need for the “starred qua ntities ” to assist in locating

-

~

.• 

w --- -
~~~: Ti~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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TAP~T1 11

Shifted S-Array with

wbere X~~is ARMk (p,q)

1 p t . . .

—q—l C2 ±1 ...
—q

.

Non Non— Non-
—l S!(—1) constant s constan ts constants

0

1

I

I :  

q-1

q . C1 —C 1 ... (—1)

q+1 : u u

q+2 C1 u u

. .
. . . .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
? ‘

~~~~~~~
‘
~~~~~
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the correct position for inspection of a particular column. In Table

12 is presented the theoretical Shifted S—array for the ANNA (3,2)

process of P~a~p1e 2 while in Table 13 is presented the Shifted

S—array for the realization of the length 300 upon which the GPAC

array in Table 8 is based. From Table 12, the ± • behavior occurs

atlag -q-l -3 beg1nningincoli~~~4. In Table ]3 this behavior

is manifested in the “large ” numbers 268.053 , —42.435 , —319.257 . At

lag q — 2 in co1w=~s 4, 5, and 6 the quantities 4.494 , —4.300 , and

4.454 respectively correspond to the (—l)~ C1 behavior of Theorem

1(c) . These observations along with the two sets of near constants

in co1~~~ 3 of Table 13 identify the process as an ARM (3 ,2). Of

course the nonconstant behavior is centered at the line drawn between

lags 0 and — 1. It is the opinion of the authors that the Shifted

S-array presents the information in the S-array in a format which is

easier to use in practice.

5. A COMPREHNNSIVE EXAMPLE

In this section we 
- 
employ the model identification techniques

mentioned in this paper , namely the GPAC array and the Shifted S—array

to model the Makridakis (1978) metal series data. It is hoped that

this a~amp1e will demons trate the use of these techniques in modeling,

rather easily, a series which has been difficult to handle with

previous techniquss

The metal series data consists of 144 monthly values of carbon

steel monthly shipments from 1961—1972. )lakridakis has fit the model

(1 — B) — (1 — e1B) (l — e123
12) at , (5.1)

- 
- where Y~ — - 3082 and I~ is th . data. Re reports that this model

~~~ ~~~~~Ji ~~1~~~LI 
~ ~~~~~~~ ~i
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TABIZ 12

Shifted S—Array for Model (3.2)
SI

—8 —2.872
—7 —2.037 3.552
—6 —1.613 1.247 —9 .154
—5 —1.737 23.860 —9.154 u
—4 —4.052 2.915 —9.154 u u

a —3 —3.556 22.437 —9.154 ±. ±“ ±.
—2 —2.651 5.686 —7.573 1.470 6.806 —7.911

lag —l —2.184 4.456 —10.750 —10.450 7.148 —65.674

0 —1.845 3.148 —4.452 3.122 —2.173 2.489
1 —1.606 2.606 —6.334 —1.004 —3.527 —1.090
2 —1.391 1.578 —4.165 4.165 —4.165 4.165
3 —1.328 —6.044 —4.165 u u
4 —2.356 2.838 —4.165 u
5 —2.632 —6.691 —4.165
6 —1.964 3.598
7 —1.534

TABLE 13

Shifted S—Array for Realization
of Length 300 from Model (3.2)

S! S~ S~ S 
- 

S~ SI
—8 —2.312
—7 1.628 3.467
—6 — .760 2.386 —9.505
—5 —4. 375 1.347 —9.472 —177.715

• —4 — .110 6.459 —9.579 8.022 —48.460
- -- f-  - —3 —7.064 6.664 —9.543 268.053 —42.435 —319.257

—2 —2.893 5.049 —7.264 —1.905 10.998 - 2.990

lag —l —2.221 4.329 —12.256 —9.160 14.689 16.074

0 —1.819 3.138 —4.218 2.888 —2.414 2.840
1 —1.528 2.728 —6.752 .908 —5.435 .919
2 —1.165 2.059 —4.372 4.494 —4.300 4.454
3 .124 1.319 —4.334 —22 .865 —5.046
4 —1.296 1.412 —4,438 4.211
5 3.174 3.807 —4.435
6 —2.593 3.322
7 —1. 762

:~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~
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does not forecast as veil as the random walk mo~ .1, an apparent

paradox since he believes this to -be the optimum model. Parzen (1979)

also analyzes the data and suggests the solution to the paradox is

that the model of Makrid k~ is not satisfactory. Parzen identifies

the AR (2) process

— .44 
~t—l 

— .35 
~~—2 

. a~ (5.2)

as the best choice according to Parzen ’ s (1974) CA1~ (criterion auto-

regressive transfer ) criterion . The same result is obtained using

Akaike’e (1974) FPE criterion. However, Parzen notices that the

sample spectrum does not agree very well with the spectrum of the

AR (2) model (5.2) and that the second choice according to CAT is an

AR (13) (The second choice by FPE is AR (3).).  Moreover the spectr um

obtained from the fitted AR (13) is quite compatible with the sample

spectrum. For this reason Parzen prefers the AR (13) model even though

it is not selected as best by either CAT or YPE.

A plot of the metals data is given in Figure 1. and the sample

autocor relations are shown in Figure 2. Table 14 shows portions of

- - tb. shift ~d S—arr ay for the data with — (_l)m
~m. The arr ay is evaluated

with — (_1)m~~ because the data is clearly predominantly low- frequency

(see Gray , Kelley, Melntire (1978)). For that arr ay the D-statistic

suggests that the ar ray be e~ a 4  ~sd for the possibility of an

ANNA (1,1), AlMA (1,2), ANNA (.1,6) or an ANNA (13,1) or AR (13) .

‘ 4n’tion of the shifted S—arr ay i .diately suggests from columns

1 and 13 that the process is AlMA (13,1) with a first order factor of

approx Imately (1 - . 9B) . Moreover since the two nonconstant values
- -‘- ~.

~

_ _
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Figure 1. Makridakis Metals Data
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Figure 2. Sample Autocorrelations from the Mekrid~~4- Data
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in column 13 are close to the “constants” of col~~ 13 it is clear

that the moving average ter m is not lar ge. In k.eping with the pro-

cedure of Gray , Kelley, and Mclntire, the data was transformed by

estimati ng the coefficient of B In (1 — B) by

+ 3~-~2~ +
% . 9 .

+ S1(—3) + S1(—4)

TABLE 14

Portion of Shifted S—Array for
M.kridakis Metals Series

(f~~. (.1)a;~)

83 S~~ ~!3 ~t4
—5 —2.240 .091 — .399 —3.079 2.143 —5.921 4.662
—4 —2.134 .406 —1.313 1.780 2.755 — .400 2 .006
—3 —2.206 —3.458 3.731 —4.595 3.020 —2.152 1.174
—2 —2.048 —4.468 18.637 .969 3.263 —17.066 1.676
—1 —2.493 —3. 168 —30 .088 ... —3.951 3.008 8.151 lO•565

• Lag
0 —1.670 1.093 —1.135 .815 — .641 .696 — .653

— . 1 —1.954 1.254 —1.51.1 — .201 — .953 1.156 — .19.7
-
~~ 2 —1.829 1.149 5.814 1.236 —.935 —1.811 —.134

3 —1.882 — .424 .117 — .488 — .731 — .111 —1.333
- - :~ 

4 —1.807 — .081 —4 .636 1.203 — .657 1.229 —1.344

- ~~
- - -

‘5-

- •1-

~ 1L 
___________

_____________ _ _ _

~~~~~~~~~~~~ 
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It is of course more conventional to difference the data in such

circ~~~tances as this. Rowever, tb. data clearly does not indicate

a strong tendency toward nonstat ionarity but does suggest the possi-

bility of a root near (.9)~~ in the characteristic equat ion. Since

as has been demonstrated by Gray, I.lley, and Mclntire (1978) , a

factor of the form (1 — .9)) is often close enough to the non—

stationary region to produce a nearly singular autocorrelat ion

fi~~ction, the S-arr ay of (1 — .9EXt should be &v~~~ned as coufirma—

tion of the tentative identific ation of the proces s as an AlMA (13,1).

Although in most problems it ma)s. little difference at this stage of

the identification process ~.bsth er one transforms the data by the

difference operator 1 — I or th. operator 1 — .91, these authors hays

foumd s~~~ cases where this seeming small change in the operators can

have a large effect. The shifted S-array of (1 — .9I)X~ is shown in

Table 15. The suggested model there is clearly an ANNA (12,1) and

the moving averags effect is obviously not large. This is consistent

with our initial identification of an AlMA (13,1). Thus the identified

model is

— (1 — e1s)a~

•(B) — 1 —  l1 — ,21 — ... —

- 

- 
- Istlastion of these coefficients shows only 

~i’ •12’ •~~ and to

be sipificant ly different from zero and hence suggests the parsimo—

slows model

_ _ _  _ _ _ _ _ _ _ _ _  _ _  _ _ _ _ _ _ _ _ _ _  _ _ _
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TABLE 15

Portion of Shifted S—Array for — (i— .9B)X~
where is the )lakridakis Metals Series

(f • (_~)a; )a a

S
~ 

S~ S~~ S~~ ~~~ S~~

—5 — .187 .232 .657 2.007 —1.051 3.166 —1.475 1.989
—4 — .264 3.037 1.534 —3.219 —1.239 — .300 —1.746 —2.014
—3 1.298 —1.789 .410 4.449 —1.437 1.504 —1. 848 —6.442
—2 2.560 —7.586 — .570 —1.381 —1.422 —43.835 .258 4.163
—l 1.188 5.875 11.809 ... 2.056 —1.181 —2.534 —4.810 4.054

Lag
0 — .543 .598 — .569 — .397 .297 — .337 .315 — .292
1 — .719 .853 .092 .220 .494 — .480 — .034 — .350
2 — .565 —1.311 — .075 — .973 .496 —9.085 .372 — .387
3 .359 — .252 —1.514 1.040 .401 —.069 .498 —.260
4 .230 4.512 — .802 —1.444 .356 — .584 .485 —3.975

I
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(1 — •B) (1 — *B12)Y
~ 

— ( 1— eB)a~. (5.4)

Initial estimates for ~, $ and e are

• — .9, * .35 , ø — .46 .

The spectral density of the AlMA (13,1) model fitted from (5.3) is shown in

Figure 3. This is essentially the s~~~ spectral density as that found by

Parzen and as mentioned is quite consistent with the sample spectral density.

Thus far we have not considered the generalized partial auto-

correlation in this ,r ~~~1e. This is to some extent due to the fact 
F’  -

that as mentioned before , its column behavior is not sufficient to

characterize an AlMA (p ,q) process , even though its row behavior does

characterize such a process. Nevertheless the generalized partial

autocorre lation is quite useful and thes. authors always consider the

GPAC array as well as the S—array. In this way there is no danger in

misconstruing the constant column behavior found in the GPAC array.

In this ~xamp1e the GPAC presents the model identification quit. nicely

and at the s~~~ time shows why the zero behavior in the rows should not

be used alone for identification, even for AR (p) models only. Table 16

shows the CPAC for the metals data and Table 17 for 
~

1— •9
~~
’

~~
’ Row 1

of Table 16 clearly demonstrates why CAT and FPE chose an AR (2) model.

That is, since through are all approxImately zero it is not

surprising that CAT and FF1 pick an AR (2). On the other hand note that

col~~~ 2 in the GPAC is not even approx imately constant and hence the
‘ 3d

long string of zeros In row 1 is only suggestive of a n~~~er of zero

-
I’ 

_________________ ________ 
________________________________
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coefficients prior to $~,
. That is, the row and column behavior

toge ther suggest the process La •~~ t Al (2) but does have a number of

zero coefficients following 
~2• Note this is also clearl y seen in

the shifted S-array where co1~am~ 2 shows no constancy behavior. In

that array the zero b havior, seen in row 1 of the GPAC array, is

obtained from the ratio of th. element s S{(_l) and S{(0) , i.e. those

on each side of the center line . Thus the S—array or shifted S-arr ay

and GPAC use both the row and coli behavior for identification of

a process • The information gained by this procedure is clearl y

d aonstrated in this ~‘rr. ple where one can easily see that the con-

stant column behavior is influenced by all of the coefficients even

if a ni~~ er of zeros lie between the firs t and the last aut oregressive

coefficients . However the zero behavior of rows gives no information

as to th. values of for larger values of k, i.e. those further out

than the zeros. The ANNA (13,1) identified by the shifted S—arr ay is

also vividly displayed by the GPA C array. Note that the ANNA (13,1)

is the only choice which shows both the ,roper row and col~~~ behavior.

Nevertheless the large values • 954, .826, .882, etc. in row 1 suggests ,

for reasons already mentioned, that it is a good idea to t ransform the

data to more stationery behavior (as we did) before making the final
.
~‘ 

I4

identification.

In concluding this “~~1e we make two fine] coem nts • The D-(I.. -

- 
~~~

• statistic which has been recomeiu’~ed [4  ] as an aid in directing

the investig ator to salient patterns in the S-arrays measures jointly

both the constant co1~~~ behavior of the S-array and th. zero row

F

[6

~~ 
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behavior currently measured by such statistic s as CAT and FF1. It

is probably overly sensitive to paitwise constant behavior and the

very first ‘zero” In the zero behavior. As mentioned earlier e~~~
modifications of this are now underway and it is hoped that it may

eventually evolve as more than * guide to inspection of the S—array

but as a dependable estimator of p and q for the AlMA (p,g) process .

F{~aJ1y as a wor d of caution , the GPAC is a very useful measurer
however Example 3 which demonstrates that its column behavior is not

sufficient to identify q is not pathological and these authors have

encountered a n~~~er of real data sets wher e the behavior demonstrated

in ~~a~p1e 3 was observed. When these observations are coupled with

the present a-~~~1 le which. demonstrates the zero behavior alone can also be

misleaMi~g, it is clear that the S—array must be consulted , being

the only measure which uniquely characterizes the AlMA (p,q) by both

its column and row properties . Actually column and diagonal prope rties

is a better description of this characterization in non—shifted 8—

arrays. However , believing that shifted S-arrays are easier to “read”

• for most users , our future reference to S—arrays will mean shifted

S—arrays.

6. ~ON~LUDING RNNARES

In this paper we have d~~~netrated the use of th. generalized

partial autocorrelation for identifying an AlMA (p,q) model. In the

process we have shown that it is the natural extension of the $ox~

JwJr4 i~ method . In addition we have d onstrated the relatio nship

between the 8- and I-array approach of Gray, lalley and Mclntire and

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _  

_ _ _
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the generaliz ed partial autocorr elatio n. That is, we have shown that

the generalized partial autocorrelation, much like the D-stat istic,

represents a condensation of the information in the S-arr ay. However,

it is also shown that the information in the CPAC arra y can at times

be misleading. We thus recc end the use of the CPAC array along

with the 1— and S—arrays and the D- statisti c. Actually we recoemend

the use of a slight modification of the S—array which we call the

shifted S-arr ay because it pre sents the information in the S—arra y in

a more easily interpretable 
form.p
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